Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
((6*x)^ln(6*x))'The calculation above is a derivative of the function f (x)
(6*x)^ln(6*x)*((ln(6*x))'*ln(6*x)+(ln(6*x)*(6*x)')/(6*x))
(6*x)^ln(6*x)*((ln(6*x))'*ln(6*x)+(ln(6*x)*((6)'*x+6*(x)'))/(6*x))
(6*x)^ln(6*x)*((ln(6*x))'*ln(6*x)+(ln(6*x)*(0*x+6*(x)'))/(6*x))
(6*x)^ln(6*x)*((ln(6*x))'*ln(6*x)+(ln(6*x)*(0*x+6*1))/(6*x))
(6*x)^ln(6*x)*((ln(6*x))'*ln(6*x)+(ln(6*x)*6)/(6*x))
(6*x)^ln(6*x)*((1/(6*x))*(6*x)'*ln(6*x)+(ln(6*x)*6)/(6*x))
(6*x)^ln(6*x)*((1/(6*x))*((6)'*x+6*(x)')*ln(6*x)+(ln(6*x)*6)/(6*x))
(6*x)^ln(6*x)*((1/(6*x))*(0*x+6*(x)')*ln(6*x)+(ln(6*x)*6)/(6*x))
(6*x)^ln(6*x)*((1/(6*x))*(0*x+6*1)*ln(6*x)+(ln(6*x)*6)/(6*x))
(6*x)^ln(6*x)*(x^-1*ln(6*x)+(ln(6*x)*6)/(6*x))
(6*x)^((1/(6*x))*(6*x)')
(6*x)^((1/(6*x))*((6)'*x+6*(x)'))
(6*x)^((1/(6*x))*(0*x+6*(x)'))
(6*x)^((1/(6*x))*(0*x+6*1))
((6)'*x+6*(x)')^ln(6*x)
(0*x+6*(x)')^ln(6*x)
(0*x+6*1)^ln(6*x)
2*6^ln(6*x)*ln(6*x)*x^(ln(6*x)-1)
| Derivative of 5^(7-x^2) | | Derivative of 260x-((x^2)/30)-73000 | | Derivative of 260-((x^2)/30)-73000 | | Derivative of ln(10)*10^sin(x) | | Derivative of 100t*cos(x) | | Derivative of 10^(-sin(x)) | | Derivative of 10^-sin(x) | | Derivative of 2(u^1/2) | | Derivative of 9x-2x^2-5x^3 | | Derivative of (100t)(cos(x)) | | Derivative of e^(cos(ln(x))) | | Derivative of (8*a-7)*x-a*sin(6x) | | Derivative of a*sin(6x) | | Derivative of -3x^7 | | Derivative of 290 | | Derivative of ln(7e^3x) | | Derivative of (t^2-1)^2 | | Derivative of (1/3)X^(-2/3) | | Derivative of (1/3)X^-2/3 | | Derivative of 3^8x | | Derivative of (4x-3)^5 | | Derivative of X^3/x^2-4 | | Derivative of x^2ln(x)^2 | | Derivative of (9-4x^2)^-1 | | Derivative of sin(4t^3) | | Derivative of (8/x^7)-(5/x) | | Derivative of 4ln(-x) | | Derivative of 3t^-1 | | Derivative of 21x | | Derivative of (3^x)^0.5 | | Derivative of 0.07*e^(-0.07x) | | Derivative of 0.07*e^(0.07x) |